Двойнов Д. & Кулагин К.
школа №216 г.Заречный
Движение заряженных частиц в однородном электрическом поле
Движение заряженных частиц в неоднородном электрическом поле
Движение заряженных частиц в однородном магнитном поле
Движение заряженных частиц в неоднородном магнитном поле

Движение заряженных частиц

в

однородном электрическом поле

Если частица, обладающая зарядом е, движется в пространстве, где имеется электрическое поле с напряжённостью E то на неё действует сила eE. Если, кроме электрического, имеется магнитное поле, то на частицу действует ещё сила Лоренца, равная e[uB] , где u - скорость движения частицы относительно поля, B - магнитная индукция. Поэтому согласно второму закону Ньютона уравнение движения частиц имеет вид:

(1)

Написанное векторное уравнение распадается на три скалярных уравнения, каждое из которых описывает движение вдоль соответствующей координатной оси.

В дальнейшем мы будем интересоваться только некоторыми частными случаями движения. Предположим, что заряженные частицы, двигавшиеся первоначально вдоль оси Х со скоростью попадают в электрическое поле плоского конденсатора.

Если зазор между пластинами мал по сравнению с их длиной, то краевыми эффектами можно пренебречь и считать электрическое поле между пластинами однородным. Направляя ось Y параллельно полю, мы имеем: . Так как магнитного поля нет, то . В рассматриваемом случае на заряженные частицы действует только сила со стороны электрического поля, которая при выбранном направлении координатных осей целиком направлена по оси Y. Поэтому траектория движения частиц лежит в плоскости XY и уравнения движения принимают вид:

Движение частиц в этом случае происходит под действием постоянной силы и подобно движению горизонтально брошенного тела в поле тяжести. Поэтому ясно без дальнейших расчетов, что частицы будут двигаться по параболам.

Вычислим угол , на который отклонится пучок частиц после прохождения через конденсатор. Интегрируя первое из уравнений (3.2), находим:

Интеграция второго уравнения даёт:

Так как при t=0 (момент вступления частицы в конденсатор) u(y)=0, то c=0, и поэтому

Отсюда получаем для угла отклонения:

Мы видим, что отклонение пучка существенно зависит от величины удельного заряда частиц e/m.

На главную
Hosted by uCoz